
Final Development of the IoT 
Elderly Care Solution 

 
Final Report 

 
 
 
 

 
 

Client: 
Andrew Guillemette 

 
Advisor: 
Daji Qiao 

 
Team Members: 

Jared Griffin 
Nidhi Dalvi 

Robert Guetzlaff 
Siyuan Zeng 

Tyler Borchert 
 
 
 

 
 

Team Email: ​sddec19-18@iastate.edu 
Team Website: sddec19-18.sd.ece.iastate.edu 

Written: 2019-12-10 
Revision 3 

1 

mailto:sddec19-18@iastate.edu


Table of Contents 
Table of Contents 2 

1 Introduction 5 
1.1 Foreword 5 
1.2 Problem Statement 5 
1.3 IoT Elderly Care Solution 5 

2 Requirements 7 
2.1 Functional Requirements 7 
2.2 Non Functional Requirements 7 
2.3 Considerations and Constraints 7 
2.4 Users and Use Cases 8 

3 System Design 9 
3.1 Final Design Plan 9 
3.2 Modules 9 

3.2.1 Hardware 9 
3.2.1.1 Kitchen Sensors 9 
3.2.1.2 Smart Outlets 9 
3.2.1.3 Data Transmission 10 

3.2.2 Logic 10 
3.2.2.1 Spring Logic Server 10 
3.2.1.2 Logic Algorithm 10 

3.2.3 Web Application 10 
3.3 Changes from Last Semester 10 

4 Implementation 12 
4.1 Hardware 12 

4.1.1 Kitchen Sensors 12 
4.1.2 Smart Outlets 12 
4.1.3 Data Transmission 12 

4.2 Logic 12 
4.2.1 Spring Logic Server 12 
4.2.2 Logic Algorithm 13 

4.3 Web Application 13 

5 Testing 14 
5.1 Hardware 14 

5.1.1 Kitchen Sensors 14 

2 



5.1.2 Smart Outlet 14 
5.1.3 Data Transmission 14 

5.2 Logic 14 
5.2.1 Spring Logic Server 14 
5.2.2 Logic Algorithm 14 

5.2 Web Application 14 

6 Results 16 
6.1 Hardware 16 

6.1.1 Kitchen Sensors 16 
6.1.2 Outlet Monitors 16 
6.1.3 Data Transmission 16 

6.2 Logic 16 
6.2.1 Spring Logic Server 16 
6.2.2 Logic Algorithm 16 

6.3 Web Application 16 
6.4 Everything 17 

7 Summary 18 

Appendix I - Required Hardware 19 

Appendix II - Operation Manual 20 

Appendix III - Alternative Solutions 21 

Appendix IV - Other Considerations 22 
 
 
  

3 



List of figures 
 
List of tables 

  

4 



1 Introduction 

1.1 Foreword 
Our original objective for this project was to pick up where two previous senior design groups 
left off developing a minimum viable product for a startup to take to investors. The client was not 
satisfied with the state of the project after the first group had finished, and while our task was to 
“improve” what they had left behind, frequent changes in what our client’s expectations and his 
general disorganization led to the majority of implementation work to be put off until well into the 
second semester. Coming into the second semester, we suspected that our client was not going 
to continue with this project as he became hard to get a hold of and did not provide the 
resources we asked for, either deflecting the issue or expecting us to use hardware that our 
advisor had for use in one of his classes. It was eventually confirmed that he had no interest in 
this project and had moved to another startup idea. 
 
Two weeks into the semester, we also gained a sixth member who after getting deeply involved 
with our sensor development abruptly left the group. These two situations together left us in a 
situation where we were not able to test the full implementation of the system and had to rely on 
testing the modules independently.  

1.2 Problem Statement 
The goal of this project is to make improvements and advancements of a previous capstone 
project. This project is intended for elderly individuals who wish to have their health monitored 
through the use of sensors placed around their residence. This project is driven by the need for 
elderly care today. There is a large number of elderly people who live alone, and loved ones 
would like to monitor their quality of life and health status to prevent health issues from arising. 
This is important because having a personal nurse is expensive, so we hope our project can 
provide a cheaper and more efficient way to allow the elderly to pursue preventative healthcare. 

1.3 IoT Elderly Care Solution 
The premise of this project is that for an elderly person who has regular habits, deviations to 
their habits may be an early indication of a new health issue. The habits of the resident are 
tracked through sensors placed throughout the kitchen to track preparation of food, tracking 
power usage of various appliances, and a smartwatch to track the patient’s activity. 
 
Our task for this project was to create the backend logic for meal preparation detection, a web 
application for the viewing of the recorded data, and to minimize the invasiveness of the 
currently existing system.  

5 



2 Requirements 

2.1 Functional Requirements 
1. Sensors must be wireless and have a lifespan of 1-2 years. 

 
2. The data from the sensors must be transmitted to our server. 

 
3. The logic system can take in a set of recorded sensor data and determine to a degree of 

certainty if a meal has been prepared. 
 

4. The resident events, meals prepared or skipped, must be displayed on a web 
application. 

2.2 Non Functional Requirements 
1. As much of the previous groups work should be reused as possible. 

 
2. The sensor system is non-invasive to the residents home. 

 
3. Detection of prepared or missed meals is timely. 

 
4. System can recover from a loss of power. 

2.3 Considerations and Constraints 
This project aims to create a minimum viable product, so the biggest consideration was cost. 
We were directed by our client to reuse as much of the previous groups work as possible. The 
server infrastructure had already been setup in Amazon Web Services, the onsite computation 
was already being done on a couple of Raspberry Pi’s, and a set of wireless smart outlets had 
already been installed. We need to continue working with these. 
 
The second most important constraint/consideration is the limitation of the sensors. Once such 
limitation is the cost of the sensor. Since this is a M.V.P for a startup company we had to ensure 
that the chosen sensor was at a reasonable price. Another is that the chosen sensor is 
completely wireless. Lastly, the sensor should be available off-the-shelf. Meaning that it can be 
readily bought. 
 

6 



Finally, as a minimum viable product, we were instructed by our client that security and 
advanced logic systems were outside the scope of the project, and that our sensors had to be 
available off the shelf. 

2.4 Users and Use Cases 
The user for this project would be a concerned party of an elderly resident living in an 
independent situation as well as the elderly resident themselves. The final system should be 
nearly invisible to the resident but provide data back to the concerned party. The web 
application should be easily accessible by the loved ones of the elderly resident. 
 
There are two main use cases for this project; 
1: A family member who wants to monitor the activity of a loved one. In this case the system 
would be installed by the family member and can be monitored from the web application 
 
2: An independent living facility that wants to monitor the activity of all of their residents as a 
service.The system can be installed at time of construction or as a retrofit of existing apartment 
units. A central ​physical ​location can then view all the data from the residents and check in on 
residents after defined warning signs occur.  
 
System implementation for either use case is the same. 

  

7 



3 System Design 

3.1 Final Design Plan 

 
 
The planned design for the elderly individual’s residence is in their kitchen. There will be arrays 
of sensors in cabinets and drawers. Each of these arrays connect through bluetooth low-energy 
to their predetermined Raspberry Pi. Once the information is received by the pi it is then 
transmitted to the cloud via the residence’s router. 
 
The logic server processes the data that comes from the sensors in the elderly individual's 
residence. This information is then fed into the web application, along with some of the 
unprocessed information for hydration of the web application. 

3.2 Modules 

3.2.1 Hardware 

3.2.1.1 Kitchen Sensors 
The kitchen sensors are TI CC2650STK Sensortags which we decided to use in our first 
semester. These sensors communicate with a Raspberry Pi via bluetooth low-energy. The data 
being sent are from the accelerometer and gyroscope sensors. The Raspberry Pi does 
processing on the incoming data to give us the desired opening/closing events to be used later. 

8 



This program is written in Python and uses gatttool to establish connections with the 
Sensortags. 

3.2.1.2 Smart Outlets 
Th 
e smart outlets used by our group are three TP-Link HS110 setup by the second group to work 
on this project. These were added to our scope when we discovered that they were unable to 
communicate to the AWS server instance group two had configured for them. We were unable 
to gain access to the instance and had to rewrite the backend of their communication. 
 
The outlets communicated over WiFi to the Raspberry Pis, where the pre-existing NodeJS code 
would intercept a notification from the outlet and send data to the server using an HTTP POST 
request. As were were unable to access or redeploy their backend, we rewrote it in PHP to 
accomplish the same task. 

3.2.1.3 Data Transmission 
The sensors in the kitchen log readings to an sqlite database on the Raspberry Pi. This allows 
them to quickly dump their data without having to check if an internet connection is present. A 
separate program acts as a relay, Checking to see if there is data in the local database, 
checking if it can communicate to our server, then transmits the data to the server and then 
deletes the transmitted entries.  

3.2.2 Logic 

3.2.2.1 Spring Logic Server  
We are using an AWS Elastic Container as a server to run the logic of our project. We deployed 
a Spring MVC project on this server to compute the data transferred through the hardware.  

3.2.2.2 Logic Algorithm 
We collected surveys from our testing target, Bob, and analyzed the sensor data that was 
transferred through the sensors to build our logic algorithm to monitor the target’s health status 
and daily activities. 

3.2.3 Web Application 
The web application is supposed to provide a way for loved ones of the resident to view the 
resident’s eating habits. The web application was also going to integrate with the work of the 
previous capstone groups and ours, displaying details about power and water usage and dietary 
changes.. 
 
The layout of the web application was going to be a dashboard, giving an overview of if the 
resident was eating their meals within a set of constraints related to when a meal was started 

9 



and how long it took to finish. The loved one would be alerted if the resident was displaying 
behavior outside of these constraints. The loved one would also have the ability to look at 
information for other days along with a detailed log of events our system was sensing. 

3.3 Changes from Last Semester 
Two weeks into the summer, the system the second capstone group and us set up at the end of 
the Spring 2019 semester crashed the central hub Raspberry Pi. We were unable to get into the 
resident’s apartment in a timely manner and were eventually unable to recover any logs 
indicating the reason for the crash. Because of the system structure setup by the first capstone 
group, the central Raspberry Pi going offline prevented all sensor data from being sent to the 
logic server. 
 
To prevent such a problem in the future, we removed the central hub Raspberry Pi concept, 
instead allowing each Raspberry Pi to connect to the logic server. We also changed the sensor 
reading program to log to a local Sqlite database. A data relay program then runs at regular 
intervals and transmit the readings to the server only if an internet connection is present. This 
change removed the potential for data loss because of a lost internet connection, and in case of 
the failure of one Raspberry PI, we will only lose the sensors connected to it and not the entire 
kitchen and smart outlet system. 

  

10 



4 Implementation 

4.1 Hardware 

4.1.1 Kitchen Sensors 
In order for data to be collected by the client we needed to create a program with the ability to 
interface with the sensors. This required us to create a python program with the following 
features: create connections, acquire data, manipulate data, consume data, and send data. 
 
Connection: 
This was achieved by having a process spawned for each desired device. In each of these 
independent processes, they create a connection using gatttool and pexpect. If a connection 
cannot be established at that time, then it retries the connection. 
 
Data acquisition: 
The data is received by sending commands to the clients gatttool processes. These commands 
include: turning on the sensors, setting its period, and turning on notifications. Once these are 
turned on, pexpect returns any notification the gatttool client receives from the sensortags.  
 
Data Manipulation: 
Since we only need a specific axis from the accelerometer and gyroscope data we need to 
extract only that part. Once that has been extracted it is sent to a function that converts it into a 
signed integer. For the gyroscope it is between -250 and 250. The accelerometer is between 
-16 and 16. 
 
Data Consumption: 
The data is consumed by open/close logic. This is sensor specific where accelerometer and 
gyroscope sensors have their own implementation. This takes in a signed integer and compares 
it to the initial value or previous values. The sensing algorithm looks for peaks and valleys in the 
data. For the “sensing” to begin the received value will have to be non-negative and beyond the 
minimal threshold. Once that has been hit, then we can assume the opening event has started 
and now accept negative values. These values signify that the closing event has begun. Once 
both of these have been found, then we can say the drawer/cabinet has opened and closed. 
This will report the time opened as well. 
 
Data Transmission: 
Once an open/close event has been recorded it is sent to a sqlite3 database. If the database is 
not already created, then it creates one. These database entries are in a format for the cloud 
mysql database to understand. 

11 



4.1.2 Smart Outlets 
We inherited this portion of the project from the second senior design group after this portion of 
their project failed over the previous summer. Our project uses three of these outlets, one on a 
microwave, one on a water heater, and one on a toaster.  
 
The Raspberry Pi that receives data from the outlets runs code developed by our previous 
group. This code is written in NodeJS and uses a third party library to intercept the notifications 
the outlets transmit to TP-Links servers when an event they have been configured to record 
occurs. The program on the Pi then transmits the event using a POST request to the AWS 
server.  
 
Our contribution replaces their NodeJS backend with one written in PHP using an apache web 
server as we were unable to access or redeploy their code. Our program receives the post 
request, and stores the event in a set of database tables, recording each event, the duration of 
usage if the event was a power off, and the last time the outlet had an event. 

4.1.3 Data Transmission 
The data relay program was written in Python and creates a Sqlite database if it does not 
already exist that mirrors the database on the AWS server. Upon running, the program will 
check to see if entries exist in the local database, and if a connection to the server is possible. 
The program will then transmit the data from the local database entry by entry, deleting the local 
entry upon confirmation that the data has been successfully inserted. 

4.2 Logic 

4.2.1 Spring Logic Server 
The Spring MVC project is composed of Models, Repositories, Services and Controllers. The 
models interpret the data transferred through the database to human readable format; The 
repositories stored the interpreted data in a good manner for the service parts to search and 
use. The services provides the algorithm to compute the logic results of our system. And finally 
the controllers mapped these services on specific paths, so the web application can call the 
server to request compute force and get the results. 
 

4.2.2 Logic Algorithm 
The logic algorithm the services using is implemented by the survey from our testing target, 
Bob. We collected his daily activities to analyze his behavior mode. For example, we concluded 
that Bob generally eat his breakfast during 4AM - 7AM. And then, we monitored the sensor data 

12 



of his daily activities to determine his behavior mode. For example, we concluded that Bob will 
open his refrigerator, bowl & plates drawer and silver drawer to make a meal. 

4.3 Web Application 
The web application that we developed was built leveraging React JS and was developed using 
test-driven development, resulting in complete code coverage by unit tests. It was also set up to 
use continuous integration by utilizing Gitlab Pipelines, initially running our test suite on the web 
application. It was also going to be responsible for deploying the web application when changes 
were made.  

13 



5 Testing 

5.1 Hardware 

5.1.1 Kitchen Sensors 
These sensors were tested with the use of Iteration Testing with prototypes and Physical 
testing.  
 
Physical testing: 
These physical tests involved using them for their designed purpose. We place the sensors in 
cabinets and drawers, open, and close them. If we were able to sense the opening and 
closings, it passed the test. 
Due to the nature of these sensors we had to resolve to testing them physically. This is because 
the sensor output is different each time. We could not use a sample output to determine test 
because they would be unrepresentative of the rest.  
 
Iteration Testing with Prototypes: 
This involved creating a prototype that served a smaller function of the planned overall design. 
This was used to make it easier to run the physical testing and finding where problems reside. 
Once the physical test have passed, then we could integrate the prototype into the overall 
program. 

5.1.2 Smart Outlet 
Testing of the smart outlets was done two fold. First by providing test events to the PHP 
backend we created to verify that data was being inserted into the database correctly. Second, 
we set the system up in an apartment connected to devices that were regularly used for two 
weeks to ensure the stability of the system. 

5.1.3 Data Transmission 
The testing plan of the data transmission is to first create sample data and ensure that it is 
transmitted correctly to the server. Then we will leave it to run alongside the kitchen sensors to 
ensure that the program is stable and correctly transmits data. 
 

14 



5.2 Logic 

5.2.1 Spring Logic Server 
The Spring Logic Server was tested using Junit test & Postman to respectively make sure each 
line of the code can run properly and the project can interact with Web Application correctly. The 
Junit test covered every class of the project and assigned mock tests case to test the classes. 
The Postman provides a way to mock the web application request to the server, such when the 
web application is complete, it can communicate with the prepared logic server. 
 

5.2.2 Logic Algorithm 
The Logic Algorithm is hard to test through the code or data, so we tested it by asking our 
testing target, Bob, to make sure the results and algorithm matched his activities. 

5.2 Web Application 
The web application was developed using test-driven development. This resulted in having a 
substantial unit testing suite that covered every line of code in the web application and was 
executed in our continuous integration pipeline, running over the web application’s code every 
time a change was made. 

  

15 



6 Results 

6.1 Hardware 

6.1.1 Kitchen Sensors 
We are able to successfully receive, manipulate, process, and send the data with multiple 
connected sensors. At most we have six sensors connected to a raspberry pi. Through the use 
of the python script we can produce data that is representative of what happened in the testing 
environment. However, the functional requirement of battery life was not discreetly addressed 
due to losing a team member late in the project.  

6.1.2 Outlet Monitors 
The results of testing our smart outlet has shown that the outlet program is stable. Testing in 
one of our members apartments accurately recorded the times that devices were turned on and 
turn off along with the length of time that the device was used. 
 
Monitoring the smart outlets for two weeks have shown that the program can run long term 
without crashing or generating errors. 

6.1.3 Data Transmission 
Our limited testing has shown that the data relay program is stable and transmits data correctly 
without duplicates.  

6.2 Logic 

6.2.1 Spring Logic Server 
The Spring MVC is deployed on the AWS ec2 server. Whenever it received the proper request 
from web app, it will respond and send the results back to the web app. Everything looks fine 
and works properly for now. The server satisfied our expectations: provides compute force to 
analyze data, compute events, and send the results to web application. 
 

6.2.2 Logic Algorithm 
We had a prototype logic algorithm running on the logic server, but we didn’t have too many 
data to determine how accurate it is because we had problems to set up meeting with our client 
and the testing target Bob. 

16 



6.3 Web Application 
The web application was primarily developed in the second half of the Fall 2019 semester 
because of a significant amount of time spent designing prototype mockups of what the web 
application would look like. Due to this, the web application only has a hard-coded meal 
overview section. If done differently, we should have forged ahead with insufficient mockups 
and made changes to the web application’s look and feel as we went. This way, we would have 
at least had a complete web application, even if it would not have looked like what we would 
have desired. 
  

17 



7 Summary 
Our goal is to help monitor the health of senior citizens.The system we built  addresses this by 
collecting data from elderly residents’ homes, analyzing their behavior against the baseline for 
their habits, and displaying our system’s health predictions in a web application for loved ones 
and health professionals to view. 
 
For the hardware, the system that we have build addresses the data from elderly residents’s 
home. We have multiple sensors connected to a hub which we will able to collect and send 
accelerometer and gyroscope data to a Raspberry Pi. 
 
The logic server provides the features to process raw data to human readable format, provides 
the logic algorithm for determining if a meal was eaten, and serves requests for the web 
application. This reduces the complexity for both hardware module and web application 
because they can ask for the compute force from the server instead of running hard 
complications on their sides. 
 
The web application allows loved one’s of the resident to keep tabs on them, allowing them to 
tell if the resident is regressing in terms of health, or if they are still doing well. This better allows 
loved ones to monitor the well being of the resident and take action when the resident’s health 
begins faltering faster.  

18 



Appendix I - Required Hardware 

Sensors 
TI Sensor Tags 
Tp-Link HS-110 Smart Outlets 
 

Computation Devices 
Raspberry Pi 3 
Wireless Router 

  

19 



 

Appendix II - Operation Manual 

Installation 

Kitchen Sensors 
Physical Sensor Installation: 
For cabinets place the sensor on the inside as close to the hinge as possible. For drawers place 
the sensor at the beginning of the drawer. 
First take the silicon cover off and then use some form of adhesive to stick the sensor in the 
desired location. Ensure that the clear portion on the sensor case is facing into the 
cabinet/drawer. Also make sure that it is oriented in a way that is expected. 

Smart Outlet 
The smart outlets are plugged into the wall and the devices you want to monitor. For best 
monitoring, one devices per outlet. 

Raspberry Pi 
Place the Raspberry Pi’s in a location where you can provide it power and connect it to the 
sensors it will be responsible for. 
 
Download code from the senior design Gitlab page. 
 
Install and configure apache. 

Running 

Kitchen Sensors  

20 



 
On the raspberry pi ensure you have these required dependencies: gatttool, pexpect, and 
sqlite3. 
 
To run the sensor.py program type into a terminal “python3 sensor.py”. Once it is done printing 
statements start turning on the sensors one at a time. Note: if a sensor does not initially 
connect, wait 30 seconds for the program to retry the connection. 

Smart Outlet Monitoring 
Run the eventScript.js program 
Node eventScript.js 

Data Relay 
Run the data_relay.py program as a scheduled task. 
Add the line 
*/10 * * * * /path_to_script/data_relay.py 
To the crontab table 

Logic 
Download the jar file and copy it to the AWS ec2 server. 
Run the command: 

nohup java -jar demo-0.0.1-SNAPSHOT.jar > demo-app.log 2>&1 & 

Web Application 
 
 
  

21 



Appendix III - Alternative Solutions 

Arduino Sensor 
Our early concept for a wireless sensor replacement was to make one ourselves using an 
arduino nano, a magnetic sensor, and a battery. This package gave us the advantage of playing 
around with the attached battery to ensure we got sufficient sensor life. The sensor would be 
programmed in C++ and enclosed in a 3d printed case. 
 
This sensor concept would have been cheaper and easier to configure the the TI sensor tags 
we ended up choosing but our client decided that off the shelf sensor solution was what we 
needed to go with. 
 

Machine Learning 
Though this project we struggled with deciding how best to identify that a meal happens when 
different meals could have many different steps involved. We used survey data to identify what 
a meal included for our one test user. 
 
In the end, our client decided that our focus should be on boolean logic focused on one single 
user and that any enhanced logic would be developed by future teams. 

22 


